Cost Indexes:
Cost at time A \(= \) Index value at time A
Cost at time B \(= \) Index value at time B

Power sizing:
Cost of asset A \(= \) \[\text{Size (capacity) of asset A} \times x\]
Cost of asset B \(= \) \[\text{Size (capacity) of asset B} \times x\]

Learning Curve:
\[T_N = T_{\text{initial}} \times N^b\]
\[b = \frac{\log(\text{learning curve rate})}{\log 2}\]

Simple Interest:
Interest earned on amount \(P : I = Pin \)
Maturity value: \(F = P(1+in) \)
i = interest rate per time period
n = number of time periods

Compound Interest:
\(F = P(1+i)^n \)
\(F \) = future value
\(P \) = present value
i = periodic interest rate
n = number of periods

Ordinary Simple Annuity:
\[P = A \left[\frac{1-(1+i)^{-n}}{i} \right] \]
\[F = A \left[\frac{(1+i)^n - 1}{i} \right] \]

Ordinary Geometric Gradient Annuity:
\[P = A_i \left[\frac{1-(1+g)^n}{i-g} \right] ; i \neq g \]
\[F = A_i \left[\frac{(1+g)^n - (1+i)^n}{i-g} \right] ; i \neq g \]

Ordinary Arithmetic Gradient Annuity:
\[A_{eq} = G \left[\frac{1 - n}{i(1+i)^n - 1} \right] \]
\[P = G \left[\frac{(1+i)^n - in - 1}{i^2(1+i)^n} \right] \]

Nominal, Periodic, Effective Interest Rates:
i = \(\frac{r}{m} \)
(1+i\text{eff}) \(= \) \((1+\frac{r}{m})^m \)
r = nominal interest rate per year
m = number of compounding periods per year
i\text{eff} = effective interest rate (compounded annually)
i = periodic interest rate

Equivalent Interest Rates:
(1+i\text{p})^p = (1+i\text{c})^c
i\text{p} = interest rate for payment period
p = number of payment periods per year
i\text{c} = interest rate for compounding period
c = number of compounding periods per year

Ordinary General Annuity:
\[P = A \left[\frac{1-(1+i_p)^{-n}}{i_p} \right] \]
\[F = A \left[\frac{(1+i_p)^n - 1}{i_p} \right] \]
i\text{p} = interest rate for payment period
n = number of payment periods
P, F, A as above for annuities
Perpetual Annuities:

Ordinary: \(P = \frac{A}{i} \)

Due: \(P = \frac{A}{i} (1+i) = \frac{A}{i} + A \)

Geometric Growth: \(P = \frac{A}{i-g} ; i > g \)

\(P, A, i, g \) as above for annuities

Investment Criteria:

NPV = \[CF_0 + \frac{CF_1}{(1+r)} + \frac{CF_2}{(1+r)^2} + \ldots + \frac{CF_n}{(1+r)^n} \]

NPV = net present value

NFV = \[CF_0(1+r)^n + CF_1(1+r)^{n-1} + \ldots + CF_n \]

NFV = net future value

EACF = equivalent annual cash flow = \[\frac{NPV}{1-(1+r)^{-n}} \]

\(CF_j \) = cash flow at time \(j \)

\(n \) = lifetime of investment

\(r = MARR \) = minimum acceptable rate of return

\(i = \text{IRR} \) = internal rate of return

\(PV(\text{neg CFs, } e_{\text{fin}})\times(1+i)^n = FV(\text{pos CFs, } e_{\text{inv}}) \)

\(i' = \text{MIRR} \) = modified internal rate of return

\(e_{\text{inv}} = \text{financing rate of return} \)

\(e_{\text{fin}} = \text{reinvestment rate of return} \)

Benefit - cost ratio, BCR = \[\frac{PV(\text{positive cash flows})}{PV(\text{negative cash flows})} \]

Probability:

\(E(X) = \text{Weighted average} = \frac{w_1S_1 + \ldots + w_kS_k}{w_1 + \ldots + w_k} \)

\(w_i \) = weight for Scenario \(i \)

\(S_i \) = value of \(X \) for Scenario \(i \)

\(E(X) = \mu_X = \text{expected value of } X = \sum_{j} P(x_j)x_j \)

\(\text{Var}(X) = \text{variance of } X = \sum_{j} P(x_j)(x_j - \mu_X)^2 \)

\(P(x_j) = \text{Probability}(X = x_j) \)

Depreciation:

\(B = \text{initial (purchase) value or cost basis} \)

\(S = \text{estimated salvage value after depreciable life} \)

\(d_t = \text{depreciation charge in year } t \)

\(N = \text{number of years in depreciable life} \)

Book value at end of period \(t \): \(BV_i = B - \sum_{t=1}^{t} d_t \)

Straight-Line (SL):

Annual charge: \(d_t = (B - S)/N \)

Book value at end of period \(t \): \(BV_i = B - t\times d_t \)

Sum-of-Years’-Digits (SOYD):

\(\text{SOYD} = N(N+1)/2 \)

Annual charge: \(d_t = (B-S)(N-t+1)/\text{SOYD} \)

Declining balance (DB):

\(D = \text{proportion of start of period } BV \text{ that is depreciated} \)

Annual charge: \(d_t = BD(1-D)^{n-1} \)

Book value at end of period \(n \): \(BV_n = B(1-D)^n \)

Capital Cost Allowance (CCA):

\(d = \text{CCA rate} \)

\(UCC_n = \text{Undepreciated capital cost at end of period } n \)

Annual charge: \(CCA_n = B(d/2) \) for \(n = 1; \)

\(CCA_n = B(d/2)(1-d)^{n-2} \) for \(n \geq 2 \)

\(UCC \text{ at end of period } n: \ UCC_n = B(1-d/2)(1-d)^{n-1} \)

\(PV(\text{CCA tax shields gained}) = \left[\frac{BdTC}{i+d} \right] \left[\frac{1}{1+i} \right] \)

\(PV(\text{CCA tax shields lost}) = \left[\frac{SdTC}{i+d} \right] \left[\frac{1}{(1+i)^N} \right] \)

\(T_C = \text{firm’s tax rate}; \ i = \text{discount rate} \)

Investment Project Cash Flows:

Taxable income = OR–OC–CCA–I

Net profit = taxable income \times (1-T) \)

Before-tax cash flow (BTCF) = I+CCA+taxable income

After-tax cash flow (ATCF) = Net profit + CCA + I

\(= (\text{Taxable income})\times(1-T) + CCA + I \)

\(= (\text{BTCF} - I - CCA)(1-T) + CCA + I \)

\(= (\text{OR} - \text{OC})(1-T) + I(T) + CCA(T) \)

Net cash flow from operations

\(= \text{ATCF} - I - \text{DIV} \)

\(= (\text{OR} - \text{OC})(1-T) + I(T) + CCA(T) - I - \text{DIV} \)

\(= (\text{OR} - \text{OC} - I)(1-T) + CCA(T) - \text{DIV} \)

Net profit + CCA – DIV

\(\text{OR= operating revenue}; \ \text{OC= operating cost} \)

\(I= \text{interest expense}; \ \text{DIV= dividends}; \ T= \text{tax rate} \)

Net cash flow = Net cash flow from operations

\(+ \text{New equity issued} + \text{New debt issued} \)

\(+ \text{Proceeds from asset disposal} - \text{Repurchase of equity} \)

\(- \text{Repayment of debt (principal)} - \text{Purchase of assets} \)

Net capital investment = \[B \left[1 - \frac{dITC}{i+d} \left[\frac{1}{1+i} \right] \right] \]

Net salvage value = \[S \left[1 - \frac{dITC}{i+d} \left[\frac{1}{(1+i)^N} \right] \right] \]

Inflation:

\((1+i') = (1+i)(1+f) \)

\(i' = i + f + (i)(f) \)

\(i = \text{market interest rate}; \ i' = \text{real interest rate} \)

\(f = \text{inflation rate} \)

Weighted Average Cost of Capital (WACC):

\(\text{WACC} = \frac{D}{V} \times (1-T_C) \times \frac{d}{i} + \frac{E}{V} \times i_e \)

\(V = D + E \)

\(D = \text{market value of debt}; \ E = \text{market value of equity} \)

\(V = \text{market value of firm} \)

\(i_d= \text{cost of (rate of return on) debt} \)

after-tax cost of debt: \(i_{td} = i_d(1-T) \)

\(i_e = \text{cost of equity} \)